Thermodynamic limitations of photosynthetic water oxidation at high proton concentrations.

نویسندگان

  • Ivelina Zaharieva
  • Jörg M Wichmann
  • Holger Dau
چکیده

In oxygenic photosynthesis, solar energy drives the oxidation of water catalyzed by a Mn(4)Ca complex bound to the proteins of Photosystem II. Four protons are released during one turnover of the water oxidation cycle (S-state cycle), implying thermodynamic limitations at low pH. For proton concentrations ranging from 1 nm (pH 9) to 1 mm (pH 3), we have characterized the low-pH limitations using a new experimental approach: a specific pH-jump protocol combined with time-resolved measurement of the delayed chlorophyll fluorescence after nanosecond flash excitation. Effective pK values were determined for low-pH inhibition of the light-induced S-state transitions: pK(1)=3.3 ± 0.3, pK(2)=3.5 ± 0.2, and pK(3)≈pK(4)=4.6 ± 0.2. Alkaline inhibition was not observed. An extension of the classical Kok model facilitated assignment of these four pK values to specific deprotonation steps in the reaction cycle. Our results provide important support to the extended S-state cycle model and criteria needed for assessment of quantum chemical calculations of the mechanism of water oxidation. They also imply that, in intact organisms, the pH in the lumen compartment can hardly drop below 5, thereby limiting the ΔpH contribution to the driving force of ATP synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proton and hydrogen currents in photosynthetic water oxidation.

The photosynthetic processes that lead to water oxidation involve an evolution in time from photon dynamics to photochemically-driven electron transfer to coupled electron/proton chemistry. The redox-active tyrosine, Y(Z), is the component at which the proton currents necessary for water oxidation are switched on. The thermodynamic and kinetic implications of this function for Y(Z) are discusse...

متن کامل

Alternating electron and proton transfer steps in photosynthetic water oxidation.

Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel-production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese-calcium complex and its protein environment ...

متن کامل

Kinetic and Thermodynamic Studies on the Reactivity of Hydroxyl Radicals in Wastewater Treatment by Advanced Oxidation Processes

The removal of dyes from wastewater, is one of the major environmental concerns due to their high color density, and they are toxic at even low concentrations. Adsorption process by advanced oxidation processes (AOPs) has been found to be a more effective method than classical methods for treating dye-containing wastewater. This research, is to investigate the decolorization abilities of az...

متن کامل

Coupling of electron and proton transfer in the photosynthetic water oxidase.

According to current estimates, the photosynthetic water oxidase functions with a quite restricted driving force. This emphasizes the importance of the catalytic mechanisms in this enzyme. The general problem of coupling electron and proton transfer is discussed from this viewpoint and it is argued that 'weak coupling' is preferable to 'strong coupling'. Weak coupling can be achieved by facilit...

متن کامل

Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation.

Cyanobacteria, algae, and plants oxidize water to the O2 we breathe, and consume CO2 during the synthesis of biomass. Although these vital processes are functionally and structurally well separated in photosynthetic organisms, there is a long-debated role for CO2/ in water oxidation. Using membrane-inlet mass spectrometry we demonstrate that acts as a mobile proton acceptor that helps to transp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 20  شماره 

صفحات  -

تاریخ انتشار 2011